


Development of a 3D-CFD Methodology for Airflow Correlation on Heat Exchangers in Hypercar Applications

➤ Supporting companies: **GammaTech Engineering (GTE)** | **BUGATTI-RIMAC (BR)**

- ❑ Start date: February/March 2026
- ❑ Project duration: 6÷8 months
- ❑ Site:
 - PoliTO's R&D labs and GTE's offices in Turin
- ❑ Compensations: Meals, travel expenses
- ❑ Motivations and Project Scope
 - Modern hybrid hypercars feature **highly complex powertrains** that **require multiple cooling circuits**. **Accurate airflow estimation on heat exchangers is critical** for predicting thermal performance, however the unique constraints of hypercars make airflow prediction challenging.
 - To ensure robust thermal management, predictive 3D-CFD full-vehicle simulation methodologies must be developed and correlated with experimental data.
- ❑ Thesis proposal:
 - The student will **develop and refine a methodology for the 3D-CFD full vehicle simulation**, assessing **airflow distribution across underhood heat exchangers**, using the software **Star-CCM+**.
 - The methodology will be supported by experimental data for calibration and validation of the models.

BUGATTI + RIMAC

